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Single-channel "pilot" manual control output in closed-loop tracking
I tasks is modeled in terms of linear discrete transfer functions which

are parsimonious and guaranteed stable. The transfer functions are

found by applying a modified superposition time series generation

N——
B . N

technique. A Levinson-Durbin algorithm is used to determine the filter
which prewhitens the input and a projective (least squares) fit of pulse

response estimates is used to guarantee identified model stability. .

A TIME SERIES APPROACH TO
CONTROLLER IDENTIFICATION

P

Results from two case studies are compared to previous findings,

,..gg where the source of data are relatively short data records, approximately
§§j 25 seconds long. Time delay effects and pilot seasonalities are discus-
;gé sed and analyzed. It is concluded that single-channel time series

‘?Z 9 controller modeling is feasible on short records; and that it is

ggg important for the analyst to determine a criterion for "best time domain
=0 -

fit" which allows association of model parameter values, such as pure
time delay, with actual physical and physiological constraints. The

"purpose" of the modeling is thus paramount.
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NOMENCLATURE

numerator discrete polynomial in z

k

coefficient of z = in a(z)

denominator discrete polynomial in z

coefficient of z K in b(z)

discrete pilot model pulse response sequence in
operation z
error displayed to pilot at instant t

k

coefficient of z7 " in g(z)

pilot transfer function as a ratio of polynomials

independent, identically distributed
lag implying "ka" seconds

pilot gain expressed in degrees per degree

total points available

pilot input uncorrelated with y(t) ip degrees at
instant t }

white noise sequence (i.i.d.) at instént t
controlled element output signal in degrees pitch
angle at instant t

sample interval (seconds)

pilot output in degrees of elevator deflection at

instant t



T 7 number of sample times in pure time delay
v transformed frequency

w frequency

Q(z) prewhitening filter in z
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1. INTRODUCTION

The key question of how the human being will be inserted in the
control loop of complex processes remains an issue throughout our society
(Rosenbrock, 1983), but nowhere is it more urgent than in flight control
systems design and analysis (Harper, 1983). The fact that a pilot of
a modern aircraft is becoming a sophisticated systems monitor (Rouse,
1983) in no way implies his demise as a controller (Rouse, 1980;
Sheridan, 1974), and a fundamental assumption in this work is that the
interaction between man and machine should be understood much better
than it is today (Palmer, 1983).

Although describing function (McRuer, 1965) and optimal control
(Kleinman, 1969-1974) pilot models have been ingeniously used to provide
insight into piloting strategy (Schmidt, 1979; Bacon, 1983; Hess, 1977),
they are now supplemented with pilot models derived from the emerging
field of time series analysis. Time series modeling of pilot behavior
is relatively new and offers tremendous potential for discerning key
system characteristics and relationships, such as the actual effect of
instabilities (Goto, 1974), pilot stress (Shinners, 1974), or task
effects (Agarwal, 1980).

Unfortunately, many time series fi@ting techniques have tended to
the "bag of tricks" approach in identification (Anstrom, 1971). The
key question is no longer parsimony of parameters, well established by

Breddermann et al (1978), but of identified model stability and the



-t
-

model's practical application in analysis (Baron, 1980). Shinner (1974)
seriods]y discussed the closed-loop identification problem, but the
manipulation of transfer functions in his fitting procedure contains no
guarantee of final model stability. The primary purpose of this work

is to present a theoretically sound closed-loop fitting procedure, still
based firmly in the common sense methods of Box and Jenkins (1976), which
guarantees model stability without sacrificing model accuracy, and thus
relate identified model characteristics, as opposed to parameters them-

selves (Hoh, 1982), with classical frequency response results.
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2. MODEL

The T1inear discrete closed-loop model structure is shown in Figure 1.
Each block represents a discrete pulse response sequence which, when
convolved with the discrete input sequence, yields the discrete output
sequence. Stable pulse sequences, even though infinite in duration,
eventually must decay for a stable system. When the pulse sequence is
expressed as a ratio of polynomials, stability is guaranteed if the
denominator roots are less in magnitude than one. The goal is to identi-
fy the pulse response sequence gp(z) and approximate its discrete (z
domain) transfer function from actual data sets {s(t)}, {y(t)}, and {W(t)}
which are equispaced in time with their means removed.

The assumptions are model linearity, time invariance, causality,
uncorrelated inputs W(t) and R(t), and prewhitenable input W(t); that
is, W(t) is a linear function of previous values plus a white noise
"shock." Previous values are mathematically linked by the backward

(-1).

shift operator z
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3. MODIFIED SUPERPOSITION TECHNIQUE

First, every signal in Figure 1 is decomposed conceptually into a
part linearly correlated with command disturbanéé W(t), and the remainder
uncorrelated with W(t). For example, output y(t) is the sum of yL(t),
which is correlated with W(t), and of yR(t), considered the effect of
an additional unknown input R(t), termed "remnant," uncorrelated wfth
W(t). The pulse response to be found relates, for constant sampling
interval "aA" seconds, the linearly correlated pilot output sL(t) to the

correlated error signal e, (t); that is,

L
e (z)g,(2) = ¢ (2) (1)

This pulse response may be expressed as an infinite sequence or as a

ratio of polynomials:

(oo}

6,(2) £ kZTalz)/b(z) 2 27T Y g,27%) (2)
P ks «
where
k=g -ky .
a(z) = (1+ ] & ) (3)
k=1
k=s -k
b(z) = (1+ ]} bkz ) (4)
k=1
and s > 2 imposed constraint



If the integer "k" in Equation (2) is allowed all values (-« - k- +),
then equation (2) defines the discrete transfer function relating the
z-transform of input sequence eL(t) to the z-transform of output sequence
GL(t) (Franklin and Powell, 1980, p. 15).

Although the signals 5L(t) and eL(t) are not directly available,
they must be "generated" if loop closure effects are properly taken into

account. To do this apply superposition to signals y(t) and W(t) of

Figure 1:
y(t) = Gy(z)W(t) + 6,(2)R(t) (5)
y (£) £ G (2)H(t) (6)
where
Go(z) = -6,(2)/[1-6,(2)G(2)] (7)
G,(2) = Gp(z)GZ(z) (8)

Since W(t) is prewhitenable (defined above) and uncorrelated with
R(t) the cross correlation identification technique of Box and Jenkins
(details in Appendix) may be applied to find an estimate of the initial
portion of the pulse response sequence 91(2)’ between v(t) and W(t). Then
al(z) and bl(z) may be determined as shown in the section on model stability,

such that

G,(z) = a;(z)/by(2) (9)

The essence of modified superposition is now to generate the time

series yL(t) using the autoregressive relation

by(z)y, (t) = a;(2)u(t) (10)



where al(z) and bl(z) are numerator and denominator polynomials,
respectively, with the structure of equations (3) and (4). The linearly

correlated signal eL(t) is then generated from

e (t) = W(t) - y (t) (11)

The above process is then repeated by reapplying superposition

to obtain the following relation between §(t) and W(t):
§(t) = G3(z)W(t) + G4(z)R(t) (12)
5 () 2 64(2)H(t) (13)

The cross correlation identification (Appendix) applied to the sequence

8(t) and W(t) yields the initial segment of pulse response sequence

g3(z), and the polynomials a3(z) and b3(z) may be determined (see next

section) such that

G3(Z) = a3(2)/b3(2) (14)

Pilot output Tinearly correlated with ¥(t) is generated from the

autoregressive relation
b3(z) GL(t) = a3(z)w(t) (15)

Finally, the cross correlation technique (Appendix) is applied to
5L(t) and eL(t) to find the initial segment of gp(k), defined by the
coefficient set {gp,» 0 < k < N}, of the pilot m9de] pulse response.
Numerator and denominator polynomials are then found (see next section)

which yields

Gp(Z) = 5 (z)/e (2) (16)



No multiplication or divisions of transfer functions occurs throughout

the above procedure.



4. MODEL STABILITY

As mentioned above, the pulse response sequence identified [gl(z),
93(2) and gp(z)] will be truncated at some finite lag “k". The
final task is to find a parsimonious numerator polynomial and stable
denominator polynomial which together are equivalent mathematically to
the identified pulse response. These polynomials are chosen to have the
structure shown in equation (2), which is re-arranged into the following
form:

kmax
ky

- - K
b,z 1)(kz0 9,2 )

£
= K(1 + Z (17)

)
(1+ }
i= k=1

a, z
i k

1

kmax > s > ¢

Since the pulse response 9 is known for 0 < k < N, by
equating coefficients for the operator "z" at each exponential power up
to "2", relationships may be found between numerator and denominator
coefficients a, and bk' Moreover, by equating coefficients for the
operator z above power "s", for which the right side of equation (15)

vanishes, one obtains for every j > 0

by + ... *+ g b_ =0 (18)

gs+j * gs+j-1 stj-s s

The above relation exists for a finite but large number of "j > 0", so
projection theory (least squares) may be used to solve for the coeffi-

cients bk (0 < k <s). Bringing term "g(s+j)" to the other side of



equation (18) and divided by "9(s+j) one may write

Alby, bys woes b1T = [-1, ..oy <177 (19)
ll'llth - .
and the "j row of A is given by
R Zstiss >0 (20)
The solution from linear algebra is
[by, b b 1T = -(aTmy AT 1, o, 1] (21)

1° ¥2° °°°2 T

To provide a parsimonious denominator, the solution of equation
(21) is accepted for the lowest order "s" which has both a stable
characteristic equation (i.e. roots less than 1.0 in magnitude) and
which yields a model pulse response similar in shape to the truncated
pulse response identified from the data. Once a stable denominator is
found the numerator a(z) and the gain K may be determined by once again

matching coefficients in equation (17);

(22)

1
a =g log+ 1 b9 4] (23)

By defining error residual to be the actual output time series
minus the pilot model output series at each sample instant, Fhe gain K
may be adjusted by a suitable minimization technique to minimize the
error residual variance. Alternatively, it may be adjusted to provide

a steady state response of unity when the input to the transfer function



js a unity pulse train, a constraint recommended by Agarwal (1980).

If a time delay "t" is to be included, the final form of Gp(z) will
be as shown in equation (2), and the indices for the pulse responses in
equations (17)-(23) should be incremented by the integer "t during
identification (for example the gain K from equation (22) equals g
identified from the data).

Validation tests may also be applied to the model. There are two
types of tests: acceptability and statistical significance. Acceptability

tests are common sense checks which compare model output series verses

residuals for whiteness properties, and checks for negligible cross-
correlation between the noise inputs.

Statistical significance tests may be performed after acceptability
tests indicate the model is reasonable. Chi-squared statistics are
available from the w(t) and v(t) prewhitened series (discussed in the
Appendix and shown in Figure 13). Assuming one can safely neglect
correlations beyond a lag of 20, for example, the statistics to be

computed are, for "whiteness" of v(t)

20
1
N- {‘(——)' v(t-k : 24
and, for uncorrelated w(t) and v(t)
N
1
N- { (t-k)v(t)} 25
(N-p) 21 TN-KY tzkw v (25)
p = order of Qv(z) %i]ter

=
i

total points in data set
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which should pass the chi-squared significance test for degrees of

freedom (20-p) and (20-1-s-1) respectively (Box and Jenkins, 1976,

p. 394). Failure of either significance test is evidence of a faulty

assumption or a modeling inadequacy.

To summarize the modified superposition technique

a) Find a finite pulse sequence relating y(t) and W(t) using cross
correlation identification (Appendix).

b) Determine a parsimonious, stable transfer function Gl(I) which
is mathematically equivalent, in the least squares sense, to
the sequence identified from the data gl(z) [equation (9)].

c) Generate time series realizations {yL(t)}, {eL(t)} using equations
(10) and (11).

d) Find a finite pulse sequence, g3(z), relating 6(t) and W(t) using
cross correlation identification, and determine a stable transfer
function G3(T) for this pulse response (equation (14)).

e) Generate time realization SL(t) using equation (15).

f) Find a finite sequence of the pulse response gp(z), from GL(t)
and 6L(t) using cross correlation identification, and fit a stable
pilot model transfer function Gp(r) to this pulse response
(equation (16)). -

g) Adjust K if desired and validate the model.



5. PILOTED LABORATORY SIMULATION

Single-channel "piloted” simulations in the Flight Simulation
Laboratory at Purdue University were accomplished with a pilot performing
pursuit tracking tasks using a single and double integrator (K/s and
K/s2 respectively) controlled element dynamics. The task involved a
command disturbance input of a random appearing forcing function, and a
standard pursuit (McRuer, 1974) display using a CRT Monitor. Data sets
were obtained at a 20 hertz sample rate and 500 points were used for
modeling, providing a record length of only 25 seconds (although the
déta run itself exceeded 60 seconds).

For the single-integrator controlled element many low-order transfer
functions provided excellent "fits," and the lowest order model is shown
in Table 1. A "direct identification" neglecting the closed-loop structure
was also performed by merely fitting signals {8(t)} and {e(t)}, and a
comparison of those results in Table 1 shows little variation in paramet-
er values between direct and indirect identification in this case. This
implies a small value for pilot injected noise relative to stick output
(see Figure 1), a reasonable deduction for a "simple" controlled element
such as K/s. An a priori selected time delay of 0.2 seconds yielded
the lowest error residual variance and is cqnsistent with previous
results (Bredderman, 1976).

A frequency response of the identified transfer function is shown

in Figures 2 and 3 where it is clear that a delay in series with a pure



gain effectively describes pilot behavior. This is consistent with
classical pilot modeling results (McRuer, 1974). Since a conventional
Bode interpretation and analysis using these frequency responses is not
valid over all frequencies in discrete systems z-domain analysis, a
transformation of variables from z to w' was accomplished using

(Franklin and Powell, 1980, p. 114)

[ é _g, (Z'l)
¥R (A
A
v = % tan ‘—"-zé (27)

Figures 4 and 5 show the transformed frequency (v) response in the
w' domain, where a conventional Bode interpretation is allowed. By
comparing Figures 4 and 5 with Figures 2 and 3, one can find no discern-
able difference between the responses over the frequency range of interest
(0 <w < 25 rps).

The time histories are shown in Figure 6. Only the first 500 points
(25 seconds) were used to develop the model, and the model output remains
reasonable accurate beyond this time. This verifies stationarity and
avoids an overfit (Kashap, 1976), which would be evidenced by increased
error residual when the model is applied to data independent of model
derivation (in this case beyond 25 seconds).

For the double-integrator controlled element a more complex transfer
function was identified and is shown in Table 2 for two values of a
priori selected time delay (0.05 seconds and 0.2 seconds).

From the frequency response plot in Figure 7 there is some resonancé
near 2.0 Hz. The phase plots are shown in Figures 8 and 9 for two

different values of time delay (0.2 and 0.05 seconds respectively).



The transformation to w' domain yields on discernable difference from
these responses and they are not shown.

In contrast to control of a "simple" K/s, the "best fit" (minimizes.
residual error variance) was obtained when time delay was set to 0.05
seconds for control of K/sz. The phase contribution from only the
poles and zeros of the discrete transfer function is apparent as time
delay changes between 0.2 seconds and 0.05 seconds, as may be seen by
the phase plots of Figures 10 and 11 in which the pure time delay has
been removed from the discrete transfer function. Selecting the larger
pure time delay on the model exposes the considerable Tead generation
from the transfer function poles and zeros. This lead generation is
not as apparent when pure time delay is reduced for the "best time
domain" fit, but the resulting 0.05 seconds might be judged too fast
to associate with a lumped physiological delay for a human operator.

A possible explanation is unmodeled pilot anticipation; that is, a
possible anticipatory loop closure not accounted for in Figure 1.

Further evidence of this is provided in the time history for the
best fitting model in Figure 12. Note that a seasonal pilot residual
(where pilot output "leads" model output) occurs during some of the
longer intérva]s of lerge slope. This could be caused by momentary
anticipatory behavior arising from the "pursuitf display including
commanded input, a factor not accounted for in a time invariant model.
Thus in determining the "best" model using time series analysis, the
purpose of the model must be given as much consideration as tests for
"best fit." |

In summary for the K/s2 controlled element, an a priori time delay

in series with a rate sensitive gain describes "pilot" behavior over his



usable bandwidth, in agreement with classical results (McRuer, 1974).

When pure time delay is not set a priori but allowed to vary in obtaining
the "best time domain fit," the minimization of an error variance criter-
ion results in a math model where the time delay is perhaps too small

be associated with physiological operator delays. This case is associated
with a pursuit task in which the command as well as the plant output is

displayed.



6. CONCLUSIONS

A modified superposition technique was described for obtaining a
parsimonious and stable discrete transfer function, along with statisti-
cal tests for model validation. Results provide evidence that the time
series technique appears feasible to implement on "short" data records.
The analyst needs, however, to determine the criterion for a "best time
domain fit" which allows association of parameter values, such as pure
time delay, with actual physical and physiological constraints. Season-
alities in pilot residual, possibly caused by anticipatory behavior,
were observed as first noted by Shinners (1974), and are not well modeled
with a time invariate model.

Future work should concentrate on the full potential of these
time series models for analyses, especially their ability to provide

stable and accurate power spectral densities, and on their application

to multi-channed closed-loop pilot modeling.
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8. APPENDIX: Cross Correlation Identification

(Box and Jenkins, 1976)

Given the situation in Figure 13, the goal is to find the pulse
response relating Y(t) and W(t), which is prewh%tenab]e by Qw(z). The
prewhitening is accomplished by applying the Levinson-Durbin algorithm
as given by Kay and Marpie (1981, pp. 1388-1383). By reversing the
order of the blocks in the forward path of Figure 13, and multiplying

each signal at the summer by Q;l(z), the following equation results:
s(z)w(t) + 7 l(2)V(t) = 8(t) ~ (28)
8(t) = 2 l(z)y(t) (29)

Now multiply equation (28) by w(t-k) and take the expectation, recalling

that w(t) is uncorrelated by assumption with v(t):
G(z) E[w(t)w(t-k)] = E[e(t)w(t-k)] (30)

By expanding G(z) using shift properties of z one obtains

Ligyz7? 4 L) EDw(thw(t-K)]= E[a(t)w(t-K)]  (31)

k >0

(g,%9;2

Since w(t) is an independent, identically distributed sequence of random

numbers with variance 05, one obtains for every lag k

ayor, = ELB(t)u(t=k)] (32)

k >0



Conventional estimation relations may now be used to estimate the terms
in equation (32) and solve for 93 for example, from Box and Jenkins

(1976, pp. 32-33) one obtains

N ,
3 L weu(t)) - G 1 8(th(t-k)) (33)

k

ne~12Z

t

which determines the pulse response sequence estimate ék’
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Table 1

Table 2
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Discrete Transfer Function Identification
Results for Controlled Element K/s (K = 1)

Modified Superposition Identification Results
for Controlled Element K/s2 (K = 1)



Model Structure G (z) = p

K

“T(1+a

12-1)

Signal to noise ratio = 50

N = 500 points

A = 0.05 seconds

-1
(1+b12p )

=4 (0.2 seconds)

Modified Direct
Parameter Superposition | Identification
Value
K* 0.64 0.69
P
K** 0.79 0.72
p
ay 0.71 0.69
b1 0.32 0.37

* Gain which minimizes error residual variance

** Gain yields steady state step response of unity



Kz_T(1+a12-1)
Model Structure G _(z) = 1 >

P (1+by2”

+b,z"

3
32 ")

+b22—

Signal to noise ratio = 30
N = 500 A = 0.05 seconds 1 =4 (0.2 seconds)

Parameter T = 0.05 sec T = 0.2 seconds
Kp* 0.03 0.89
Kp** 0.033 1.22
a, 10.9 -0.67
b1 - 1.42 -1.41
b2 0.91 0.88
b3 - 0.1 -0.06
Roats ' 0.14 0.08
0.64 tj 0.57 0.67 £j 0.57

* Gain which minimizes error residual variance

** Gain yields steady state step response of unity
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Figure 7 Manual Controller Frequency Response Magnitude:
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Figure 8 Manual Controller Frequency Response Phase:
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Figure 9 Manual Controller Frequency Response Phase:
K/sz, T = .05 seconds

Figure 10 Manual Controller Frequency Pole-zero Response
Phase: K/sz, 1 = 0.2 seconds

Figure 11 Manual Controller Frequency Pole-zero Response
Phase: K/sz, T = .05 seconds

Figure 12 Model OQutput vs. Pilot Output: K/sz, t = .05 seconds

Figure 13 Linear Discrete Model for Cross Correlation Identification
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